Треугольники АМВ и CMD подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого треугольника. В нашем случае: <ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD <BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС Для подобных треугольников можно записать: DC:AB=MC:MA Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде: 24:16=x:(25-x) 24(25-x)=16x 600-24x=16x 40x=600 x=15 МС=15 см
<ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD
<BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС
Для подобных треугольников можно записать:
DC:AB=MC:MA
Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде:
24:16=x:(25-x)
24(25-x)=16x
600-24x=16x
40x=600
x=15
МС=15 см
1 задача:
Доведения:
Рассмотрим ΔABD и ΔАВС
1) АВ = ВС (ΔАВС - равнобедренный с основанием АС)
2) AD = DC (ΔАВС - равнобедренный с основанием АС)
3) BD - общая.
Итак, ΔABD = ΔСВС за III признаком piвностi треугольников.
3 этого следует, что ∟ABD = ∟CBD. Тогда BD - биссектриса ∟АВС.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой, поэтому АЕ = ЕС.
2 задача
Рассмотрим ΔАВС - равнобедренный (АВ = ВС),
тогда ∟А = ∟C (свойство равнобедренного треугольника).
Рассмотрим ΔАВК и ΔСВМ.
1) АВ = ВС (по условию)
2) ∟А = ∟C (ΔАВС - равнобедренный)
3) ∟ABK = ∟CBM (по условию).
Итак, ΔАВК = ΔСВМ за II признаком piвностi треугольников.
3 этого следует pавность всех соответствующих Элементы, а именно ВМ = ВК.