В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
1.180°-149°= 31°.
7. - (нет картинок, ничего не понятно, если добавишь позже, я отвечу)
8. -
9. -
10. АС= 37+10=47см, ВС= 47-5 =42 см; Р = АВ + АС + ВС = 37+42+47 = 126 см.
11. АВ = Р - ВС - АС = 60-26-15 = 19 см.
12.АС = 35+6 = 41 см, ВС = 41-9 = 32 см, Р = 35+32+41 см
13. ВС = 2ВЕ, т.к. АЕ медиана => ВС = 34,1×2 = 68,2 см.
14. ЕС =
15. ЕС =
16.Рассмотрим ∆AMB, ∠ВАМ +∠АВМ = 180-120= 60°; Из точек А и В проведены биссектрисы => ∠А+В = 60 ×2 = 120°
17.∠В = 180-87-26 = 67°
18. Т.к. ∆АВС равнобедренный, ∠В=∠С => ∠А = 180 - (65+65) = 50°
19. Т.к. ∆АВС равнобедренный, ∠А=∠С; т.к. АD биссектриса, ∠DAC= 1/2 ∠A; Пусть ∠DAC - x, тогда ∠С= 2х, составим уравнение:
2х+х+105=180
3х=75
х=25 => ∠С=2×25 = 50°
20. ∠А= 180-51-53= 76°
Объяснение:
Объяснения написаны вместе с ответами :)