Можно провести из точки С прямую II ВD и продлить AD до пересечения с этой прямой, пусть это точка Е. Треугольник АВЕ имеет ту же площадь, что и трапеция, потому что его оcнование равно (AD + BC), а высота у них общая - расстояние от С до AD.
Треугольник АВЕ подобен АDО, и отношение сторон (3 + 4)/4 = 7/4; значит отношение площадей (7/4)^2 = 49/16, осталось заметить, что площадь треугольника ADO равна 4/3 от площади треугольника АВО, потому что ВО = OD*3/4, а высота этих треугольников общая - это расстояние от А до BD.
знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;
Можно провести из точки С прямую II ВD и продлить AD до пересечения с этой прямой, пусть это точка Е. Треугольник АВЕ имеет ту же площадь, что и трапеция, потому что его оcнование равно (AD + BC), а высота у них общая - расстояние от С до AD.
Треугольник АВЕ подобен АDО, и отношение сторон (3 + 4)/4 = 7/4; значит отношение площадей (7/4)^2 = 49/16, осталось заметить, что площадь треугольника ADO равна 4/3 от площади треугольника АВО, потому что ВО = OD*3/4, а высота этих треугольников общая - это расстояние от А до BD.
Итак, площадь ADO = 6*4/3 = 8;
S = 8*49/16 = 49/2;
знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;