5 задача = 1)угол А= угол С=60, а сумма углов треугольника равна 180 градусов, следовательно, угол В=60.
2)Итак, все углы по 60 градусов, значит, треугольник АВС - равносторонний, т.е. АВ=ВС=АС.
3)По условию ВС+АС=4, из пункта 2 следует, что АВ=ВС=АС=2 см. Периметр АВС=2+2+2=6 см
6 задача =
Треугольники равны по третьему признаку (по трем сторонам), следовательно, углы у них тоже будут равны. Следовательно, угол ABC = TPK, BAC = PTK, ВСА = PKT. Найдем PKT:
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12
4 задача =
x-один из равных углов треугольника
x-второй из равных углов треугольника
y-третий угол треугольника
x+x+y=180
x=y+96
2x+x+96=180
x=28
5 задача = 1)угол А= угол С=60, а сумма углов треугольника равна 180 градусов, следовательно, угол В=60.
2)Итак, все углы по 60 градусов, значит, треугольник АВС - равносторонний, т.е. АВ=ВС=АС.
3)По условию ВС+АС=4, из пункта 2 следует, что АВ=ВС=АС=2 см. Периметр АВС=2+2+2=6 см
6 задача =
Треугольники равны по третьему признаку (по трем сторонам), следовательно, углы у них тоже будут равны. Следовательно, угол ABC = TPK, BAC = PTK, ВСА = PKT. Найдем PKT:
PKT = 180-(TPK+PTK); PKT = 180-(124+46); PKT = 10
Объяснение: