ответ действительно номер 3, решается это все очень просто: есть неравенство вида x^2-0,1x<0, исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - > x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)
есть неравенство вида x^2-0,1x<0,
исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - >
x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²