Г.найдите координаты вектора ab, если а 5; 9; -1); в (-4; 0; 3) 2.найдите длину отрезка cd и координаты его середины, если c (-3; 1; 7), d (8.0; 4). 3. а) найдите длину вектора ab, если а (3,5; -1), b(-6; 0; 7). б) найдите длину вектора (9.-2: 7). 4. а) найдите скалярное произведение векторов, если (4; 5; 3); (-44: 3). б) докажите, что векторы взаимно перпендикулярны: ( 12; -6; 7); b (3: 42). в) найдите соѕ а, если дан треугольник abc, заданный координатами своих вершин: а(-8; 2; -2), b(0; -3; 8), с(9: +6: 3).
Объяснение:
Теорема:
В треугольнике:
1) против бо́льшей стороны лежит бо́льший угол;
2) против бо́льшего угла лежит бо́льшая сторона.
12.12 ВC >AC > AB
Рисуем ᐃАВС, обозначаем вершины А , В, С.
Сторона ВС - самая большая, значит, и угол напротив неё будет самым большим. Против ВС лежит угол А.
a) ∠А > ∠B б) ∠A > ∠C в) ∠В > ∠С
∠В лежит против стороны АС, а ∠С - против АВ. Ппоскольку, по условию,
АС >АВ, то ∠В > ∠С
12.13
а) ∠А > ∠С > ∠В ( по рис. смотрим, какой угол против какой стороны лежит)
∠А - против ВС, ∠С - против АВ, ∠В - против АС, следовательно, по теореме:
ВС > AВ > АC
б) ∠А > ∠В, ∠В = ∠С , т.к. два угла равны, то АВ = АС и это будет равнобедренный треугольник с основанием ВС и вершиной в т.А
Т.к., ∠А > ∠В и ∠А > ∠С, то ВС - бо́льшая сторона в треугольнике
12.14
a) АВ =14см, ВС =5 см, АС =6см
АC > BC > AB , следовательно,
∠В > ∠A > ∠C
б) АВ = ВС =7см, АС = 10см
Т.к., две стороны равны, то ᐃАВС - равнобедренный и
∠С = ∠A
АС =10см, и ∠В > °A = ∠C
12.18
Внешний угол треугольника вместе с внутренним составляет 180°
Если 2 внешних угла равны, то равны и 2 внутренних угла треугольника, и, следовательно, он равнобедренный.
12. 19
∠1 и ∠ВАС - вертикальные, следовательно, они равны.
Аналогично, ∠2 = ∠ВСА
Т.к. ∠1 < ∠2 , то и ∠ВАС < ∠ВСА, а, значит, и ВС < АВ
Всего мы получаем две пары внутренних односторонних углов:
<1 и <2, <3 и <4
Причем
<1 + <2 = 180°
<3 + <4 = 180°
Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360°
Нам известна сумма трех углов. Найдем четвертый угол:
360° - 235° = 125°
Допустим, это <1. Тогда <2 = 180°-125°=55°
<2 и <3 - накрест лежащие, по свойству параллельных прямых они равны
<2 = <3 = 55°
<4 и <1 - также накрест лежащие, следовательно
<4 = 125°