Гіпотенуза прямокутного трикутника дорівнює с, а один із гострих кутів дорівнює а. Знайдіть площу бічної поверхні конуса, утвореного в результатi обертання цього трикутника навколо катета, протилежного даному куту.
он ездил именно в такой последовательности, потому что возвышались пороки человеческие.
если манилов это пустой мечтатель, бездеятель, лентяй, то плюшкин это высшая степень пороков человека.
но, хотя все помещики считаются мертвыми душами, не развивиющимися, плюшкин считается самым живым из них, потому что него есть цель в жизни (еще больше разбогатеть) и у него хоть как-то проявляются чувства (он переживает из за одиночества; играет с внуками)
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
ответ:
манилов-> коробочка-> ноздрев-> собакевич-> плюшкин
он ездил именно в такой последовательности, потому что возвышались пороки человеческие.
если манилов это пустой мечтатель, бездеятель, лентяй, то плюшкин это высшая степень пороков человека.
но, хотя все помещики считаются мертвыми душами, не развивиющимися, плюшкин считается самым живым из них, потому что него есть цель в жизни (еще больше разбогатеть) и у него хоть как-то проявляются чувства (он переживает из за одиночества; играет с внуками)
Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:
а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.
б) уравнение медианы BM.
Находим координаты точки М как середины стороны АС.
М(((-2+1)/2; (1+3)/2) = (-0,5; 2).
Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).
Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.
Оно же в общем виде 7у – 2х – 15 = 0.
И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).
в) cos угла BCA.
Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.
Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.
cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.
г) уравнение высоты CD.
Находим уравнение стороны АВ.
Вектор AB = ((3-(-2)); (3-1)) = (5; 2).
Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).
Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.
0 = (-5/2)*1 + b. Отсюда b = 5/2.
Уравнение CD: y = (-5/2)x + (5/2).
д) длина высоты СD.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = (A·Mx + B·My + C)/√A2 + B2
Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:
2х – 5у + 9 = 0.
d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =
= 11/√29 = 11√29/29 ≈ 2.0426487.
е) площадь треугольника АВС по векторам.
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
S= ± (1 /2) *(x1−x3 y1−y3 )
(x2−x3 y2−y3 )
x1−x3 y1−y3
x2−x3 y2−y3
A(−2,1), B(3,3), С(1,0).
S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.