SO перпендикуляр к плоскости многоугольника. Рассмотрим треугольники SOM, SOQ, SOP, SON. Они все равны (прямоугольный, гипотенузы равны, а катет общий), тогда отрезки OM, OQ, OP, ON равны. Наконец, по теореме о трех перпендикулярах OM перпендикулярно AB, OQ - AD, OP - CD, ON - BC. Т.к. длины отрезков равны, а расстояние от точки до прямой измеряется по перпендикуляру, опущенному из этой точки на прямую, то О равноудалена от сторон многоугольника. Т.к. О принадлежит плоскости многоугольника, то О - центр вписанной окружности, ч.т.д.
Сумма углов выпуклого n-угольника равна (n-2)*180, где n - число углов Сумма углов выпуклого 2n-угольника = (2n-2)*180, где 2n - число углов
Сумма углов выпуклого 2n-угольника в k раз больше суммы углов выпуклого n-угольника (2n-2)*180= k*( (n-2)*180) k=(2n-2)*180 разделить на (n-2)*180 k=(2n-2) разделить на (n-2) k=2 (n-1) разделить на (n-2) n должно быть четным n=2p 2p k=2 (2p-1) разделить на (2p-2)= k=2 (2p-1) разделить на 2*(p-1)= k= (2p-1) разделить на (p-1)= k= (p+p-1) разделить на (p-1)= 1+(p\p-1) где (p\p-1) -целое и четное только если p=2 тогда k=3
Сумма углов выпуклого 2n-угольника =
(2n-2)*180, где 2n - число углов
Сумма углов выпуклого 2n-угольника в k раз больше суммы углов выпуклого n-угольника
(2n-2)*180= k*( (n-2)*180)
k=(2n-2)*180 разделить на (n-2)*180
k=(2n-2) разделить на (n-2)
k=2 (n-1) разделить на (n-2)
n должно быть четным n=2p
2p
k=2 (2p-1) разделить на (2p-2)=
k=2 (2p-1) разделить на 2*(p-1)=
k= (2p-1) разделить на (p-1)=
k= (p+p-1) разделить на (p-1)= 1+(p\p-1)
где (p\p-1) -целое и четное только если p=2
тогда k=3