1-вариант.
Задание 1
ответ А. Так как соответственные углы равны.
Задание 2
∠С- 14х+4
∠В- 12х+6
∠ АDC-140 градусов
(14х+4)+(12х+6)=140
14х+4+12х+6=140
26х+10=140
26х=140-10
26х=130
х=5
С=14*5-4=66
ответ: ∠С=66 градусов
Задание 3
∠А-30
∠С-100
СС1-биссектриса-7 см
ВС1-?
∠В=180-(100+75)=5
Так как биссектриса делит угол пополам то ВСС1- равнобедренный => ВС1=СС1= 7см
ответ: ВК1= 7см
Задание 4
САД=30 =>ДАВ=30 т.к АД биссектриса, делит угол на равные части.
∠А=30+30=60
∠В=180-∠А+∠С= 180-(60+50)=70
∠В=70
ответ: ∠В=70
Вроде так.
Объяснение:
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
1-вариант.
Задание 1
ответ А. Так как соответственные углы равны.
Задание 2
∠С- 14х+4
∠В- 12х+6
∠ АDC-140 градусов
(14х+4)+(12х+6)=140
14х+4+12х+6=140
26х+10=140
26х=140-10
26х=130
х=5
С=14*5-4=66
ответ: ∠С=66 градусов
Задание 3
∠А-30
∠С-100
СС1-биссектриса-7 см
ВС1-?
∠В=180-(100+75)=5
Так как биссектриса делит угол пополам то ВСС1- равнобедренный => ВС1=СС1= 7см
ответ: ВК1= 7см
Задание 4
САД=30 =>ДАВ=30 т.к АД биссектриса, делит угол на равные части.
∠А=30+30=60
∠В=180-∠А+∠С= 180-(60+50)=70
∠В=70
ответ: ∠В=70
Вроде так.
Объяснение:
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60