Пусть при пересечении прямых a и b секущей АВ накрест лежащие углы равны: угол 1=2. Докажем, что а параллельна b. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой АВ и, следовательно, параллельны.
Рассмотрим случай, еогда углы 1 и 2 не прямые.
Из середины О отрещка АВ проведем перпендикуляр ОН к прямой а. На прямой b от точки В отложим отрезок ВН1, равный отрещку АН, и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО=ВО, АН=ВН1, 1=2), поэтому угол 3=4 и угол 5=6. Из равенства 3=4 следует, что точка Н1 лежит на продолжении луча ОН, т.е. точки Н, О и Н1 лежат на одной прямой, а из равенства 5=6 следует, что угол 6 - прямой (т.к. угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой НН1, поэтому они параллельны.
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Рассмотрим случай, еогда углы 1 и 2 не прямые.
Из середины О отрещка АВ проведем перпендикуляр ОН к прямой а. На прямой b от точки В отложим отрезок ВН1, равный отрещку АН, и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО=ВО, АН=ВН1, 1=2), поэтому угол 3=4 и угол 5=6. Из равенства 3=4 следует, что точка Н1 лежит на продолжении луча ОН, т.е. точки Н, О и Н1 лежат на одной прямой, а из равенства 5=6 следует, что угол 6 - прямой (т.к. угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой НН1, поэтому они параллельны.
Теорема доказана.
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.