Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
KPNM - трапеция, PN║KM , KM=16 . AK=AN , BM=BP , AB=5 . Продолжим отрезок АВ до пересечения его со сторонами трапеции КР и NM . Получим отрезок СД. Так как средняя линия трапеции проходит и через середины диагоналей трапеции, то отрезок АВ лежит на средней линии, которой будет отрезок СД и тогда АВ║КМ. Точка Д - середина NM, т.к. она лежит на продолжении АВ и тогда АД║КМ. По теореме Фалеса стороны ∠KNM пересечены параллельными отрезками АД и КМ ⇒ точка Д - середина NM, раз точка А - середина KN. Аналогично, точка С - середина КР . ΔKNM: BД - средняя линия ΔKNM ,BД║КМ, ВД=1/2*КМ=1/2*16=8. ΔKPM: CB - средняя линия ΔKPM , CB║KM , CB=1/2*КМ=1/2*16=8. СА=СВ-АВ=8-5=3 ВД=ВД-АВ=8-5=3 СД=СА+АВ+ВД=3+5+3=11 Средняя линия СД=(КМ+PN)/2=(16+PN)/2=11 , 16+PN=2*11 16+PN=22 PN=6 Если знать свойство: длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований, то можно решить быстрее. АB=(КМ-PN)/2 , 5=(16-PN)/2 , 16-PN=10 , PN=6 .
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54
AK=AN , BM=BP , AB=5 .
Продолжим отрезок АВ до пересечения его со сторонами трапеции
КР и NM . Получим отрезок СД.
Так как средняя линия трапеции проходит и через середины диагоналей трапеции, то отрезок АВ лежит на средней линии, которой будет отрезок СД и тогда АВ║КМ.
Точка Д - середина NM, т.к. она лежит на продолжении АВ и
тогда АД║КМ.
По теореме Фалеса стороны ∠KNM пересечены параллельными отрезками АД и КМ ⇒ точка Д - середина NM, раз точка А - середина KN. Аналогично, точка С - середина КР .
ΔKNM: BД - средняя линия ΔKNM ,BД║КМ, ВД=1/2*КМ=1/2*16=8.
ΔKPM: CB - средняя линия ΔKPM , CB║KM , CB=1/2*КМ=1/2*16=8.
СА=СВ-АВ=8-5=3
ВД=ВД-АВ=8-5=3
СД=СА+АВ+ВД=3+5+3=11
Средняя линия СД=(КМ+PN)/2=(16+PN)/2=11 ,
16+PN=2*11
16+PN=22
PN=6
Если знать свойство: длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований, то можно решить быстрее.
АB=(КМ-PN)/2 , 5=(16-PN)/2 , 16-PN=10 , PN=6 .