‼️Геометрия‼️ 1) E(4;12);F(-4;-10)G(-2;6)H(4;-2).Найти:
а) координаты векторов EF, GH
б) длину вектора FG
в) координаты точек О-середина EF, координаты точек W-середина GH
г) OW; EH
д) уравнение окружности с диаметром FG
e) уравнение прямой FH
завтра кр, времени не осталось(
Периметр ромба MNOD равен 32 см.
Объяснение:
Дано: ABCD - ромб, ∠A = 30°, BC = 16 см, т.O - точка пересечения диагоналей ромба, т.M ∈ AD, AM = MD, т.N ∈ AB, AN = NB.
Найти: P(MNOD).
Решение.
1) Ромб - это параллелограмм, у которого все стороны равны. Все стороны ромба ABCD равны по 16 см. У ромба ABCD противоположные стороны попарно параллельны.
AM = MD = 8 см.
2) Диагонали ромба являются биссектрисами его углов, пересекаются под углом 90°, точкой пересечения делятся пополам. ⇒
∠OAD = 60° / 2 = 30°; ∠AOD = 90°;
3) ΔAOD прямоугольный с гипотенузой AD = 16 см. Катет, лежащий против угла 30° равен половине гипотенузы. Катет OD = 16 см / 2 = 8 см. Диагональ BD = 8 см * 2 = 16 см.
4) В ΔBAD отрезок MN является средней линией, так как проходит через середины двух сторон треугольника. Средняя линия треугольника параллельна основанию и равна его половине.⇒
MN = 8 см, MN ║BD и значит MN ║OD.
В ΔBAD отрезок NO является средней линией, так как проходит через середины двух сторон треугольника. ⇒
NO = 8 см, NO║AD и значит NO ║MD.
⇒ В четырехугольнике MNOD противолежащие стороны параллельны и все стороны равны. ⇒ MNOD - ромб.
5) Найдем периметр ромба MNOD:
P(MNOD) = 4 * 8 см = 32 см.
Рисунок прилагается.
Пусть стороны АВС равны а,в и с.
Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h.
Составим систему уравнений на основе данных задания.
Р(АВК) = с + h +(b/2) = 12.
P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10.
Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
ответ: длина биссектрисы BK равна 2 см.