геометрия
1)Вычисли остальные углы параллелограмма, если угол C равен 31°.
А=
B=
C=
2)Вычисли площадь ромба, если его сторона равна 8 см, а проведённая к ней высота равна 5 см. ответ: площадь ромба = см²
3)Основание равнобедренного треугольника равно 120 см, а боковая сторона равна 100 см.
Вычисли высоту, проведённую к основанию.
ответ)=высота равна=
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )
Объяснение:
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.