Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований. AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH). AB = √(AD·AH)
AB=CD
∠ABD=90°
---
Опустим высоту BH к основанию AD.
BH ⊥ AD
Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований.
AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH).
AB = √(AD·AH)
AB = √(AD·(AD-BC)/2)
AD = 25 см
BC = 7 см
AB = √(25·(25-7)/2) = 4
P ABCD = AD+BC+2AB
P ABCD = 25+7+2·4 = 40 (см)
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).