Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
1)S треугольника=1/2*(Сторона треугольника на h, проведённую к ней).Найдём h, она в 3 раза больше стороны, к которой проведена, т.е. высота треугольника равна 12 см, а S=1/2*(4*12)=24см^2; 2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2; 3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2 А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2;
3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба
S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2
А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.