Стороны подобных треугольников пропорциональны. Найдём коэффициент подобия, он равен отношению длин меньших сторон подобных треугольников. У первого треугольника меньшей является сторона с длиной 20 см, у второго - 5 см, тогда
k = 20/5 = 4.
Получили, что длины сторон первого трегольника в 4 раза больше соответствующих длин сторон второго треугольника, тогда
24 : 4 = 6 (см) - длина средней стороны второго треугольника,
28 : 4 = 7 (см) - длина большей стороны второго треугольника.
Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
6см, 7см.
Объяснение:
Стороны подобных треугольников пропорциональны. Найдём коэффициент подобия, он равен отношению длин меньших сторон подобных треугольников. У первого треугольника меньшей является сторона с длиной 20 см, у второго - 5 см, тогда
k = 20/5 = 4.
Получили, что длины сторон первого трегольника в 4 раза больше соответствующих длин сторон второго треугольника, тогда
24 : 4 = 6 (см) - длина средней стороны второго треугольника,
28 : 4 = 7 (см) - длина большей стороны второго треугольника.
ответ: 6см, 7см.
т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции,
отрезок касательной будет высотой трапеции (EF).
радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны,
площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° )
высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника)
отрезки касательных к окружности, проведенных из одной точки, равны))