1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
Расстояние между серединами перпендикуляра и наклонной равно 2√3 м.
Объяснение:
Дано: плоскости α║β, АВ ⊥ α, АВ ⊥ β, АВ = 3м, СD = 5м.
АС = 4м, BD = 4м. AF=EB, CF=FD.
Найти EF.
Проведем перпендикуляры СС1 и FF1 к плоскости β.
Четырехугольники АСС1В и EFF1B - прямоугольники и
C1B = FC = 4м, EF = BF1 (противоположные стороны прямоугольников.
Треугольник С1BD - равнобедренный с основанием С1D.
С1F1 = F1D, так как FF1 - средняя линия треугольника СС1D.
BF1 - медиана и высота этого треугольника.
В прямоугольном треугольнике CC1D по Пифагору:
C1D = √(CD²-CC1²) = √(5²-3²) = 4м. F1D = 2м.
В треугольнике С1BD по Пифагору
BF1 = √(BD²-F1D²) = √(4²-2²) = 2√3м.
EF = BF1 = 2√3 м.