Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
Объяснение:
№3
Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
√(25²-20²)=15 см;
площадь - S=15*40/2=300 см².
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.