Герои произведений Дуня из "Станционного смотрителя" А.С.Пушкина и Настя из "Телеграммы" К.Г.Паустовского похожи, несмотря на то что авторы создавали свои произведения в разные века. Обе девушки забывают о своем долге перед родителями, Дуня уезжает с офицером Минским, забыв о своем отце, а Настя . в Ленинград. И Самсон Вырин, и Катерина Петровна страдают от одиночества, тоскуют по своим детям, а впоследствии умирают. При жизни дети так и не нашли возможности навестить своих родителей, приезжают только на могилы, когда тех уже не станет.
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Герои произведений Дуня из "Станционного смотрителя" А.С.Пушкина и Настя из "Телеграммы" К.Г.Паустовского похожи, несмотря на то что авторы создавали свои произведения в разные века. Обе девушки забывают о своем долге перед родителями, Дуня уезжает с офицером Минским, забыв о своем отце, а Настя . в Ленинград. И Самсон Вырин, и Катерина Петровна страдают от одиночества, тоскуют по своим детям, а впоследствии умирают. При жизни дети так и не нашли возможности навестить своих родителей, приезжают только на могилы, когда тех уже не станет.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.