Объяснение:
центральный угол равен внутреннему равен 90 градусов для квадрата
центральный угол равен 120 градусов и больше чем внутренний угол равностороннего треугольника равного 60 градусов
вроде определились что это треугольник но надо доказать что это именно то что нам нужно
центральный угол правильного n - угольника равен 360/n
внутренний угол правильного n - угольника равен 180*(n-2)/n
по условию 360/n = 2 * 180*(n-2)/n
отсюда следует n-2 = 1
n = 3 - значит это треугольник
периметр искомого треугольника равен 3*2 см = 6 см
Сначало найдём угол D:
Сумма углов треугольника равна 180°
=> ∠D = 180 - (31 + 69) = 80°
Против большего угла лежит большая сторона.
Против меньшего угла лежит меньшая сторона.
∠D - наибольший угол => СЕ - наибольшая сторона.
∠Е - средний угол => CD - средняя сторона.
∠С - наименьший угол => ED - наименьшая сторона.
1) неверно, так как DE < CD (DE - наименьшая, а CD - средняя)
2) неверно, так как CD < CE (CD - средняя, а СЕ - наибольшая)
3) верно (CE - наибольшая, а DE - наименьшая)
4) неверно, так как DE < CE (DE - наименьшая, а СЕ - наибольшая)
ответ: 3)
Объяснение:
центральный угол равен внутреннему равен 90 градусов для квадрата
центральный угол равен 120 градусов и больше чем внутренний угол равностороннего треугольника равного 60 градусов
вроде определились что это треугольник но надо доказать что это именно то что нам нужно
центральный угол правильного n - угольника равен 360/n
внутренний угол правильного n - угольника равен 180*(n-2)/n
по условию 360/n = 2 * 180*(n-2)/n
отсюда следует n-2 = 1
n = 3 - значит это треугольник
периметр искомого треугольника равен 3*2 см = 6 см
Сначало найдём угол D:
Сумма углов треугольника равна 180°
=> ∠D = 180 - (31 + 69) = 80°
Против большего угла лежит большая сторона.
Против меньшего угла лежит меньшая сторона.
∠D - наибольший угол => СЕ - наибольшая сторона.
∠Е - средний угол => CD - средняя сторона.
∠С - наименьший угол => ED - наименьшая сторона.
1) неверно, так как DE < CD (DE - наименьшая, а CD - средняя)
2) неверно, так как CD < CE (CD - средняя, а СЕ - наибольшая)
3) верно (CE - наибольшая, а DE - наименьшая)
4) неверно, так как DE < CE (DE - наименьшая, а СЕ - наибольшая)
ответ: 3)