Пусть сторона основания равна а, боковое ребро - b. Диагональ боковой грани равна: d=√(a²+b²). В тр-ке, образованном диагональю, призмы, диагональю боковой грани и стороной основания, a/d=tgα. a/(√a²+b²)=1/√2, возведём все в квадрат и упростим, 2а²=a²+b², a²=b², a=b. Сторона основания равна боковому ребру, значит данная призма - куб. В кубе все грани равны. Сумма оснований - сумма двух граней, боковая сторона - сумма четырёх граней. ответ: Площадь боковой поверхности в два раза больше суммы площадей оснований.
Трапеция АВСД, АВ=СД, уголА=уголД, ВС+АД=48, окружность можно вписать в трапеции при условии сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, АВ+СД=48, АВ=СД=48/2=24,
проводим высоты ВН и СК на АД, НВСК- прямоугольник, ВС=НК, ВН=СК=диаметр вписанной окружности=6*корень3*2=12*корень3 треугольник АВН=треугольнику КСД как прямоугольные треугольники по гипотенузе и острому углу, АН=КД, треугольник АВН прямоугольный, АН=корень(АВ в квадрате-ВН в квадрате)=корень(576-432)=12
Диагональ боковой грани равна: d=√(a²+b²).
В тр-ке, образованном диагональю, призмы, диагональю боковой грани и стороной основания, a/d=tgα.
a/(√a²+b²)=1/√2, возведём все в квадрат и упростим,
2а²=a²+b²,
a²=b²,
a=b.
Сторона основания равна боковому ребру, значит данная призма - куб.
В кубе все грани равны. Сумма оснований - сумма двух граней, боковая сторона - сумма четырёх граней.
ответ: Площадь боковой поверхности в два раза больше суммы площадей оснований.
проводим высоты ВН и СК на АД, НВСК- прямоугольник, ВС=НК, ВН=СК=диаметр вписанной окружности=6*корень3*2=12*корень3
треугольник АВН=треугольнику КСД как прямоугольные треугольники по гипотенузе и острому углу, АН=КД, треугольник АВН прямоугольный, АН=корень(АВ в квадрате-ВН в квадрате)=корень(576-432)=12
ВС+АН+НК+КД=48, ВС+12+ВС+12=48, ВС=12=НК, АД=12+12+12=36