Теорема о пересечении серединных перпендикуляров к сторонам треугольника
В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.
Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.
По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.
Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.
Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.
Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.
Площадь треугольника (то бишь боковой грани пирамиды) S=(a * hтреуг)/2 hтреуг - в данном случае это апофема нашей пирамиды Чтобы найти апофему рассмотрим треугольник образованный высотой пирамиды, апофемой и радиусом вписанной окружности между апофемой и высотой). У него угол при основании равен 45° (по условию), угол у основания высоты - 90°, следовательно, угол, образованный высотой и апофемой также 45°, значит, этот треугольник - равнобедренный, и радиус вписанной окружности равен высоте и равен 6 см. Значит сторона основания, равная диаметру вписанной окружности, равна 6*2=12 см. Апофема вычисляется по теореме Пифагора (т.к. наш равнобедренный треугольник еще и прямоугольный). Апофема равна √6²+6² = √72≈8,5 см. Отсюда: а) площадь боковой поверхности S=(12*8.5)/2=51 см² б) площадь всей поверхности S=((12*8.5)/2)*4+12*12=204+144=348 см²
Теорема о пересечении серединных перпендикуляров к сторонам треугольника
В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.
Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.
По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.
Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.
Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.
Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.
Объяснение:
S=(a * hтреуг)/2
hтреуг - в данном случае это апофема нашей пирамиды
Чтобы найти апофему рассмотрим треугольник образованный высотой пирамиды, апофемой и радиусом вписанной окружности между апофемой и высотой). У него угол при основании равен 45° (по условию), угол у основания высоты - 90°, следовательно, угол, образованный высотой и апофемой также 45°, значит, этот треугольник - равнобедренный, и радиус вписанной окружности равен высоте и равен 6 см. Значит сторона основания, равная диаметру вписанной окружности, равна 6*2=12 см. Апофема вычисляется по теореме Пифагора (т.к. наш равнобедренный треугольник еще и прямоугольный). Апофема равна √6²+6² = √72≈8,5 см.
Отсюда:
а) площадь боковой поверхности S=(12*8.5)/2=51 см²
б) площадь всей поверхности S=((12*8.5)/2)*4+12*12=204+144=348 см²