Проведем диаметр и обозначим его AC . Проведем хорду и обозначим её BN. Точку пересечения хорды с диаметром обозначим буквой O.Соединим точку В хорды с концами диаметра А и В. У нас получилось два прямоугольных треугольника. AOB. и BOC. Примем отрезок АО =9см, а отрезок ОС=x. Тогда АС =9+x(это диаметр). Из треугольника АВС находим. ВС^2=АС^2-АВ^2: Из треугольника. ВОС ВС^2=ОВ^2+ОС^2 : Левые части равны значит АС^2 -АВ^2=ОВ^2+ОС^2. Подставляя значения получаем: (9+x)^2-(9^2+12^2)=12^2+x^2; 81+18x+x^2- 81 -144=144+x^2: 18x=288, x=16. AC =9+16=25. Радиус равняется АС/2=25/2 =12,5(см) ответ:12,5.
Так как ∠А=∠А1 ( по условию), то треугольник АВС можно наложить на треугольник А1В1С1, так что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ = А1В1, АС = А1С1, то сторона АВ совместится со стороной А1В1, а сторона - АС состороной А1С1; в частности совместятся точки В и В1, С и С1. Следовательно, совместятся стороны ВС и В1С1. Итак, ∆АВС и ∆А1В1С1 полностью совместятся, значит они равны. как то такв середине треугольник не нужен
Дано:
∠A=∠A1
AB=A1B1
AC=A1C1
Доказать:
ΔABC=ΔA1B1C1
Доказательство:
Так как ∠А=∠А1 ( по условию), то треугольник АВС можно наложить на треугольник А1В1С1, так что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ = А1В1, АС = А1С1, то сторона АВ совместится со стороной А1В1, а сторона - АС состороной А1С1; в частности совместятся точки В и В1, С и С1. Следовательно, совместятся стороны ВС и В1С1. Итак, ∆АВС и ∆А1В1С1 полностью совместятся, значит они равны. как то такв середине треугольник не нужен