Δ ADB-равнобедренный (т.к. стороны(AD и DB) равны), следовательно углы при основании (AB) равны, т.е. ∠ А = ∠ В = 40°.
2)140°
ΔСАВ-равнобедренный (т.к. стороны(AС и АB) равны), следовательно углы при основании (СB) равны, т.е. ∠ С = ∠ В = 40°. ∠ DBA=180°-40°=140°. (это по свойству смежных углов)
3)40°
ΔСВК-равнобедренный (т.к. стороны(СК и КВ) равны), следовательно углы при основании (СВ) равны, т.е. ∠С = ∠ В = 40°. ∠СВК= ∠DBA = 40°. (это как вертикальные)
4)40°
Δ BDC = Δ BDA (по трем сторонам: АВ=ВС, AD=DC, BD-общая сторона (признак равенства треугольников)). Из этого следует, что ∠DBC= ∠DBA=40°.
5) (проблемка)
Δ BDC = Δ BDA (по трем сторонам: АВ=ВС, AD=DC, BD-общая сторона (признак равенства треугольников)). Из этого следует, что ∠DBC= ∠DBA. (В принципе тоже самое что и в 4-ом пункте, только здесь нет градусной меры угла. Возможно так и задумано, но я придумать не могу, как решить.)
6)60°
Δ BКМ = ΔBСМ (по трем сторонам: МК=СМ, ВК=ВC, BМ-общая сторона (признак равенства треугольников)). Из этого следует, что ∠КВМ= ∠ СВМ=30°.
Δ ВСК будет равен (возможно!) ΔАВС (по трем сторонам: АВ=ВК, AС=КC(но на рисунке этого не показано, я решала так, если бы они были равны!!), BС-общая сторона (признак равенства треугольников)). Из этого следует, что ∠ КВС= ∠АВС=25°. А дальше решать по свойству смежных углов: сумма смежных углов должна быть равна 180°, следовательно
№2
1) 40°
Δ ADB-равнобедренный (т.к. стороны(AD и DB) равны), следовательно углы при основании (AB) равны, т.е. ∠ А = ∠ В = 40°.
2)140°
ΔСАВ-равнобедренный (т.к. стороны(AС и АB) равны), следовательно углы при основании (СB) равны, т.е. ∠ С = ∠ В = 40°. ∠ DBA=180°-40°=140°. (это по свойству смежных углов)
3)40°
ΔСВК-равнобедренный (т.к. стороны(СК и КВ) равны), следовательно углы при основании (СВ) равны, т.е. ∠С = ∠ В = 40°. ∠СВК= ∠DBA = 40°. (это как вертикальные)
4)40°
Δ BDC = Δ BDA (по трем сторонам: АВ=ВС, AD=DC, BD-общая сторона (признак равенства треугольников)). Из этого следует, что ∠DBC= ∠DBA=40°.
5) (проблемка)
Δ BDC = Δ BDA (по трем сторонам: АВ=ВС, AD=DC, BD-общая сторона (признак равенства треугольников)). Из этого следует, что ∠DBC= ∠DBA. (В принципе тоже самое что и в 4-ом пункте, только здесь нет градусной меры угла. Возможно так и задумано, но я придумать не могу, как решить.)
6)60°
Δ BКМ = ΔBСМ (по трем сторонам: МК=СМ, ВК=ВC, BМ-общая сторона (признак равенства треугольников)). Из этого следует, что ∠КВМ= ∠ СВМ=30°.
∠СВК= ∠СВМ+ ∠КВМ= 30°+30°=60°. ∠СВК = ∠DBA = 60°. (это как вертикальные).
7) (тоже проблемка, но у меня получилось 130°)
Δ ВСК будет равен (возможно!) ΔАВС (по трем сторонам: АВ=ВК, AС=КC(но на рисунке этого не показано, я решала так, если бы они были равны!!), BС-общая сторона (признак равенства треугольников)). Из этого следует, что ∠ КВС= ∠АВС=25°. А дальше решать по свойству смежных углов: сумма смежных углов должна быть равна 180°, следовательно
∠КВС+ ∠СВА+ ∠DBA= 180°
∠DBA= 180° - ∠КВС- ∠СВА=180°-25°-25°=130°
Надеюсь понятно
основание высоты лежит на пересечении медиан, думаю это понятно почему...
находим длину медианы, она будет равна корень из 108-27=9 (находим через прямоугольный треугольник например, так как медиана это еще и высота)
далее проекция ребра на площадь основания это отрезок медианы между основанием ребра и основанием высоты= 2/3 медианы=6
боковое ребро=36+9=3 корня из 5
площадь боковой=3 площадям бокового треугольника= 3* 1/2 6 корней из 3* высоту в этом треугольнике
найдем ее: зная ребро по пифагору: 45-27=3 корня из 2 (аналогично высота=медиане в равнобедренном треугольнике)
площадь боковой поверхности равна 3*1/2*6 корней из 3*3 корня из 2=27корней из 6