1. Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. 2. Сумма углов выпуклого n-угольника равна (n-2)x180, где n - число углов данного многоугольника. 3. 180 градусов 4. четырёхугольник с параллельными и равными противоположными сторонами 5. В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO = OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 . 6. Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны 7. Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: a + b = c + d, а средняя линия — полусумме боковых сторон: m = \frac{{c + d}}{2}.
Равнобедренная трапеция — трапеция, у которой боковые стороны равны AB = CD. Тогда равны диагонали AC = BD и углы при основании \angle BAD = \angle CDA, \angle ABC = \angle BCD.
Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна 180^\circ.
В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.
AC = AD; AB = AE; CE = 7 (сантиметров); AE = 3 (сантиметра).
Найти:AB; BD.
Доказать:△ ACE = △ ABD.
Доказательство:По данным условиям можно сделать вывод, что задачу возможно доказать по 1 признаку равенства треугольников.
1 треугольник = 2 треугольник
2 стороны = 2 стороны
угол между 2 сторонами = угол между 2 сторонами
AB = AE (по условию); AC = AD (по условию).
∠ A - общий, поэтому является равным в обоих треугольниках.
⇒ △ ACE = △ ABD (по 1 признаку равенства треугольников)
ч.т.д.
Решение:Из "Доказательство" ⇒ BD = CE = 7 (сантиметров); AB = AE = 3 (сантиметра). (т.к. треугольники равны)
ответ: 7 сантиметров; 3 сантиметра.2. Сумма углов выпуклого n-угольника равна (n-2)x180, где n - число углов данного многоугольника.
3. 180 градусов
4. четырёхугольник с параллельными и равными противоположными сторонами
5. В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
6. Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны
7. Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: a + b = c + d, а средняя линия — полусумме боковых сторон: m = \frac{{c +
d}}{2}.
Равнобедренная трапеция — трапеция, у которой боковые стороны равны AB = CD. Тогда равны диагонали AC = BD и углы при основании \angle BAD = \angle CDA, \angle ABC = \angle BCD.
Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна 180^\circ.
В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.
Допишу в комментариях не влезает