Пирамида правильная, значит АВ=ВС=АС=4 и AS=BS=CS=6.
Из точек А и В проведем перпендикуляры к ребру SC. Получившийся треугольник АВН является искомым сечением, так как плоскость АВН перпендикулярна ребру SC.
Найдем площадь этого треугольника.
Треугольник АSС равнобедренный со сторонами АS=CS=6 и основанием АС=4. Высоту этого треугольника АН можно найти по Пифагору из прямоугольных треугольников ASH и ACH.
АН²=AS²-HS²(1) и АН²=AС²-CH², или АН²=AС²-(SC-HS)² (2).
Подставим известные значения и приравняем оба выражения.
36-HS² = 16-(6-HS)². Отсюда НS=14/3, a АН²= 36-196/9 = 128/9.
Найдем высоту треугольника АВН. По Пифагору
НК = √(АН²-АК²) = √(128/9-4) = √(92/9).
Тогда площадь сечения равна (1/2)*АВ*НК = 2*√(92/9) = (4/3)*√23.
2-й вариант решения:
Мы видим, что плоскость сечения делит пирамиду на две: SАВН и CАВН, у первой из которых высота SН, а у второй - СН (так как SС перпендикулярна плоскости АВН).
Объем данной нам пирамиды равен сумме объемов двух пирамид (SАВН и САВН). По формуле объема пирамиды имеем:
(1/3)*Sabh*SН + (1/3)*Sabh*СН = Vsabc.
То есть VsаЬс=(1/3)*Sabh*(SН+НС) =(1/З)SаЬh*6 = 2SаЬh.
Объем данной нам пирамиды равен (1/3)*SаЬс*SО, где SО - высота пирамиды. Площадь основания (площадь равностороннего треугольника) равна (√3/4)*а². В нашем случае Sа6с= 4√3. Найдем SО. В правильном треугольнике высота равна h= (√3/2)*а и делится точкой О(центром треугольника) в отношении 2:1 считая от вершины. В нашем случае
9)
Земля до солнца: 93.000.000*1,609=149.637.000млн.миль
Солнце до Меркурия:
36.000.000*1,609=57.924.000млн.миль
Солнце до Венеры:
67.000.000*1,609=107.803.000 млн.миль
Солнце до Марса:
141.000.000*1,609=226.869.000 млн.миль
Солнце до Юпитера:
483.000.000*1,609=777.147.000 млн.миль
Солнце до Сатурна:
887.000.000*1,609=1.427.183.009млн.миль
Солнце до Урана:
1.784.000.000*1,609=2.870.456.000.000
млн.миль
Солнце до Нептуна:
2.796.000.000*1,609=4.498.764.000.000
млн.миль
10)
268,8км*900=241920 вёрст, в реальное время 4ч.20мин.
1,5*900=1350 вёрст по рисунку.
Всё в принципе, надеюсь , удачи)
Объяснение:
Пирамида правильная, значит АВ=ВС=АС=4 и AS=BS=CS=6.
Из точек А и В проведем перпендикуляры к ребру SC. Получившийся треугольник АВН является искомым сечением, так как плоскость АВН перпендикулярна ребру SC.
Найдем площадь этого треугольника.
Треугольник АSС равнобедренный со сторонами АS=CS=6 и основанием АС=4. Высоту этого треугольника АН можно найти по Пифагору из прямоугольных треугольников ASH и ACH.
АН²=AS²-HS²(1) и АН²=AС²-CH², или АН²=AС²-(SC-HS)² (2).
Подставим известные значения и приравняем оба выражения.
36-HS² = 16-(6-HS)². Отсюда НS=14/3, a АН²= 36-196/9 = 128/9.
Найдем высоту треугольника АВН. По Пифагору
НК = √(АН²-АК²) = √(128/9-4) = √(92/9).
Тогда площадь сечения равна (1/2)*АВ*НК = 2*√(92/9) = (4/3)*√23.
2-й вариант решения:
Мы видим, что плоскость сечения делит пирамиду на две: SАВН и CАВН, у первой из которых высота SН, а у второй - СН (так как SС перпендикулярна плоскости АВН).
Объем данной нам пирамиды равен сумме объемов двух пирамид (SАВН и САВН). По формуле объема пирамиды имеем:
(1/3)*Sabh*SН + (1/3)*Sabh*СН = Vsabc.
То есть VsаЬс=(1/3)*Sabh*(SН+НС) =(1/З)SаЬh*6 = 2SаЬh.
Объем данной нам пирамиды равен (1/3)*SаЬс*SО, где SО - высота пирамиды. Площадь основания (площадь равностороннего треугольника) равна (√3/4)*а². В нашем случае Sа6с= 4√3. Найдем SО. В правильном треугольнике высота равна h= (√3/2)*а и делится точкой О(центром треугольника) в отношении 2:1 считая от вершины. В нашем случае
ОС= (2/3)*(√3/2)*4=4√3/3.
Тогда по Пифагору SO=√(36-16/3)=√92/√3 = 2√23/√3.
Следовательно, Vsabc = (1/3)*Sа6с*SО = (8/3)*√23.
Но Vsabc=2SаЬh, отсюда
SаЬh (4/3)*√23.
ответ: площадь сечения равна (4/3)*√23.