Извините, без рисунка, попробуйте врубиться в текст. Просто нет возможности файл грузить.
R=АО - радиус описанной окружности найдем из ΔАОД. АО=√(АД²+ДО²)
Т.к. треуг. АВС равнобедренный, то Д-середина АВ, т.к. ОД лежит на биссектрисе СД, а, значит, что то же самое, что и на медиане СД, АД=6/2=3
ДО =4, тогда АО =√(9+16)=5
А т.к. центр окружности лежит на пересечении биссектрис, то поднимая биссектрису, а заодно и высоту ДО до точки С, на расстояние радиуса =5, получим, что СД- высота =4+5=9
Зная основание и высоту, можно найти площадь треугольника.
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6. Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13. Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29. Значит С(-8;29).
ответ: 1) С(8;-6) 2) С(-8;29)
Извините, без рисунка, попробуйте врубиться в текст. Просто нет возможности файл грузить.
R=АО - радиус описанной окружности найдем из ΔАОД. АО=√(АД²+ДО²)
Т.к. треуг. АВС равнобедренный, то Д-середина АВ, т.к. ОД лежит на биссектрисе СД, а, значит, что то же самое, что и на медиане СД, АД=6/2=3
ДО =4, тогда АО =√(9+16)=5
А т.к. центр окружности лежит на пересечении биссектрис, то поднимая биссектрису, а заодно и высоту ДО до точки С, на расстояние радиуса =5, получим, что СД- высота =4+5=9
Зная основание и высоту, можно найти площадь треугольника.
9*6/2=27/ед.кв./