Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.