Геометрия 7 класс.Задача из Якласса
В равнобедренном треугольнике NRG проведена биссектриса GM угла G у основания NG,
∡ GMR = 96°. Определи величины углов данного треугольника (если это необходимо, промежуточные вычисления и ответ округли до тысячных).
====================
Решение.
Перенесем диагональ BD в точку С, получим СК
Рассмотрим треугольник АСК.
S(трапеции)=(a+b)h/2= S(Δ ACK)
a+b- сумма оснований трапеции
По условию средняя линия- полусумма оснований, значит сумма в два раза больше средней линии.
Треугольник АСК - прямоугольный, так как 10²+24²=26²
Поэтому площадь такого треугольника удобнее считать по формуле:
площадь прямоугольного треугольника равна половине произведения катетов
S(Δ ACK)= 10·24/2= 120 кв см
S( трапеции)= S( Δ ACK) = 120 кв . см
Проведем высоты ВК и СМ
ВС=КМ=4 см
Обозначим АВ=х, тогда в прямоугольном треугольнике АВК : АК=х/2 - катет против угла в 30 градусов
По теореме Пифагора
АВ²=ВК²+АК²
х²=ВК²+(х/2)²
ВК²=3х²/4
ВК=х√3/2
Обозначим СD=y
В прямоугольном треугольнике CDM
СМ=у/2 - катет против угла в 30 градусов
По теореме Пифагора
CD²=CM²+MD²
y²=(y/2)²+MD²
MD=y√3/2
AD=8
AD=AK+KM+MD
(x/2)+ 4 + (y√3/2)=8
(x/2)+(y√3/2)=4
или
х+ (у√3)=8 (*)
ВК=СМ как высоты трапеции
х√3/2= у/2 ⇒ у=х√3 и подставим в (*)
х + х√3·√3=8
х+3х=8
4х=8
х=2
у=2√3
ответ. 2 и 2√3