Дан треугольник АВС, ВН - медиана к стороне АС, АК - мелиана к стороне ВС. Пусть L пересекает АС в точке Х, а ВС в У. Нужно найти ХУ. Треугольник АВН подобен треугольнику ХОН (они оба прямоугольные; угол ВАН=угол ОХН, поскольку АВ||ХУ; угол АВН=угол ХОН). Тогда АВ/ХО=ВН/ОН=АН/ХН. (*) Поскольку АС = 24 см, а ВН - медиана, то АН=НС=12 см. Из треугольника НОС: ОН=корень из (СО^2 - СН^2)=корень из (225-144)=9 (см). По свойству медианы: ВО/ОН=2:1, тогда ВО=18 см, а ВН=27 см. (*)=> ВН/ОН=АН/ХН. 27/9 = 12/ХН. ХН=4 см. Из треугольника ХОН по теореме Пифагора ОХ = корень из 97 (см). Тогда длина ХУ = 2ОХ = 2×корень из 97 (см). ответ: ХУ = 2×корень из 97 (см).
Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O.
Треугольник АВН подобен треугольнику ХОН (они оба прямоугольные; угол ВАН=угол ОХН, поскольку АВ||ХУ; угол АВН=угол ХОН). Тогда АВ/ХО=ВН/ОН=АН/ХН. (*)
Поскольку АС = 24 см, а ВН - медиана, то АН=НС=12 см. Из треугольника НОС: ОН=корень из (СО^2 - СН^2)=корень из (225-144)=9 (см). По свойству медианы: ВО/ОН=2:1, тогда ВО=18 см, а ВН=27 см.
(*)=> ВН/ОН=АН/ХН. 27/9 = 12/ХН. ХН=4 см.
Из треугольника ХОН по теореме Пифагора ОХ = корень из 97 (см).
Тогда длина ХУ = 2ОХ = 2×корень из 97 (см).
ответ: ХУ = 2×корень из 97 (см).
Теорема доказана