Сначала строится прямоугольный треугольник, у которого катет равен стороне, а гипотенуза - диагонали. Строится он так. На плоскости берутся две взаимно перпендикулярные прямые, от точки их пересечения (это первая вершина прямоугольника, её местоположение выбирается произвольно) вдоль одной их прямых откладывается отрезок, равный стороне прямоугольника, в конечную точку этого отрезка (это вторая вершина прямоугольника) ставится циркуль и проводится окружность радиусом, равным диагонали. Где-то окружность пересечет вторую прямую. Эта точка (это третья вершина прямоугольника) соединяется с центром окружности (со второй вершиной).
Получился прямоугольный треугольник с нужными размерами.
Теперь надо достроить его до прямоугольника, для этого надо через концы гипотенузы провести прямые параллельно противоположным катетам. Построить параллельную через заданную точку циркулем и линейкой - это стандартное построение.
Сначала строится прямоугольный треугольник, у которого катет равен стороне, а гипотенуза - диагонали. Строится он так. На плоскости берутся две взаимно перпендикулярные прямые, от точки их пересечения (это первая вершина прямоугольника, её местоположение выбирается произвольно) вдоль одной их прямых откладывается отрезок, равный стороне прямоугольника, в конечную точку этого отрезка (это вторая вершина прямоугольника) ставится циркуль и проводится окружность радиусом, равным диагонали. Где-то окружность пересечет вторую прямую. Эта точка (это третья вершина прямоугольника) соединяется с центром окружности (со второй вершиной).
Получился прямоугольный треугольник с нужными размерами.
Теперь надо достроить его до прямоугольника, для этого надо через концы гипотенузы провести прямые параллельно противоположным катетам. Построить параллельную через заданную точку циркулем и линейкой - это стандартное построение.
Это все.
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.