В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
operovist
operovist
04.06.2023 08:46 •  Геометрия

Геометрия 8 класс Длина нижнего основания трапеции 5,8 см, расстояние между серединами диагоналей 3,6 см. Найдите большое основание трапеции.​

Показать ответ
Ответ:
DEN23567893
DEN23567893
01.11.2022 11:42
По условию ∆ АВС – равнобедренный, АВ = ВС → СК : ВК = АМ : ВМ = 5 : 8
Значит, CK = АМ = 5х , ВК = ВМ = 8х

ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности

AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20

Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24

S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240

ОТВЕТ: S abc = 240
Окружность с центром о, вписанная в равнобедренный треугольник авс с основанием ас, касается стороны
0,0(0 оценок)
Ответ:
Salekhova58
Salekhova58
16.05.2020 20:07

\boxed{CD = 15}

Объяснение:

Дано: ABCD - трапеция, AB ∩ CD = K, AD = 12, AC = 8,  BC = \dfrac{16}{3}, BK = 8

Найти: CD - ?

Решение: Треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, так как угол ∠AKD - общий, а так как по условию ABCD - трапеция, то по определению трапеции её две стороны являются параллельными, так как по условию AB ∩ CD = K, то следовательно BC║AD, тогда угол ∠KBC = ∠KAD как соответственные углы при параллельных прямых и секущей по теореме (BC║AD; AK - секущая). По свойству отрезка AK = AB + BK. Так как треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, то по свойствам подобных треугольников: \dfrac{AD}{BC} = \dfrac{AK}{BK} \Longleftrightarrow AD \cdot BK = BC \cdot AK.

AD \cdot BK = BC \cdot (AB + BK)

12 \cdot 8 = \dfrac{16}{3} \cdot (AB + 8 )\bigg | \cdot 3

288 = 16(AB + 8)|:16

18 = AB + 8

AB = 10

Рассмотрим треугольник ΔABC. ПО теореме косинусов:

BC^{2} + AC^{2} - 2 \cdot BC \cdot AC \cos \angle ACB = AB^{2}

\cos ACB = \dfrac{BC^{2} + AC^{2} - AB^{2}}{2 \cdot BC \cdot AC} = \dfrac{\left (\dfrac{16}{3} \right)^{2} + 8^{2} - 10^{2}}{2 \cdot \dfrac{16}{3} \cdot 8} = \dfrac{\dfrac{256}{9} + 64 - 100 }{\dfrac{256}{3} } =

= \dfrac{\dfrac{256}{9} - 36 }{\dfrac{256}{3} } = \dfrac{\dfrac{256}{9} - \dfrac{324}{9} }{\dfrac{256}{3} } = \dfrac{\dfrac{256 - 324}{9} }{\dfrac{256}{3} } = -\dfrac{\dfrac{68}{9} }{ \dfrac{256}{3} } = - \dfrac{68 \cdot 3}{256 \cdot 9} = -\dfrac{68}{768} = -\dfrac{17}{192}.

Угол ∠ACB = ∠CAD как внутренние разносторонние углы при при параллельных прямых и секущей по теореме (BC║AD; AK - секущая).

Так как ∠ACB = ∠CAD, то cos ∠ACB =  cos ∠CAD.

По теореме косинусов для треугольника ΔCAD:

CD = \sqrt{AC^{2} + AD^{2} - 2 \cdot AC \cdot AD \cos \angle CAD} = \sqrt{8^{2} + 12^{2} - 2 \cdot 8 \cdot 12\cdot \left (- \dfrac{17}{192} \right)} == \sqrt{64 + 144 + 17} = \sqrt{225} = 15.


НУЖЕН ВАШ НУЖЕН ВАШ ОТВЕТ
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота