В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Алексей712
Алексей712
02.06.2022 12:07 •  Геометрия

ГЕОМЕТРИЯ 8 КЛАСС. КОНТРОЛЬНАЯ

Показать ответ
Ответ:
Люсии1г7у
Люсии1г7у
24.02.2023 04:32

Эту задачу можно решить двумя

1) геометрическим,,

2) векторным.

1) Проведём сечение АА1М.

Отрезок А1М как медиана и высота правильного треугольника равен:

А1М = 2√3*cos 30° = 2√3*(√3/2) = 3. Тогда А1Т = 3/2 = 1,5.

Угол между плоскостью ВСТ и прямой АТ - это угол между АТ и её проекцией на плоскость ВСТ.

Проекция АТ лежит на линии пересечения плоскостей ВСТ и АА1М.

Это линия ТР. Точка Р лежит на стороне ВС в её середине.

Отрезки АТ и ТР равны.

Искомый угол АТР  равен 2arc tg (3/2)/5 = 2arc tg (3/10) = 0,5829 радиан = 33,3985°.

2) Поместим призму ребром АВ по оси Оу, точка А - начало координат. Ребро АА1 по оси Oz.

В(0; 2√3; 0), С(3; √3; 0), Т(0,75; 3√3/4; 5), А(0; 0; 0).

Уравнение плоскости ВСТ по трём точкам определяем так:

Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение получаем из выражения:               (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.

Подставив координаты точек, находим уравнение плоскости ВСТ:

x + √3y + 0,6z - 6 = 0.

Вектор АТ равен координатам точи Т: АТ(0,75; 3√3/4; 5).

Синус угла между прямой и плоскостью равен:

sin α = |1*0.75+√3*(3√3/4)+0*5|/(√(1²+(√3)²+0,6²)*√(0.75²+(3√3/4)²+5²)) =

        = 0,550459.  

Угол равен 0,5829 радиан  или 33,3985 градуса.

             

0,0(0 оценок)
Ответ:
Loikov1
Loikov1
11.12.2022 14:17
ответ:

Всё в разделе "Объяснение".

Объяснение:

1. Неверно.

Два треугольника называются подобными , если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

2. Верно.

Это 2 признак подобия треугольников.

3. Верно.

Даны два квадрата. Назовём их ABCD и A_1B_1C_1D_1.

Проведём диагональ AC в квадрате ABCD и диагональ A_1C_1 в квадрате A_1B_1C_1D_1.

Рассмотрим \triangle ABC, \triangle ACD, \triangle A_1B_1C_1, \triangle A_1C_1D_1.

У квадрата все углы прямые.

\angle B = \angle B_1 = \angle D = \angle D_1 = 90^{\circ}, по свойству квадрата.

\angle ACD = \angle ACB = \angle A_1C_1D_1 = \angle A_1C_1B_1, так как диагонали квадрата делят углы пополам.

\Rightarrow \triangle ABC\sim \triangle ACD \sim \triangle A_1B_1C_1 \sim \triangle A_1C_1D_1, по 1 признаку подобия треугольников.

\Rightarrow ABCD\sim A_1B_1C_1D_1.

4. Неверно.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
15 . заранее . подобные треугольники установите, истинны или ложны следующие высказывания: 1. два тр
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота