Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
При пересечении двух параллельных прямых третьей секущей сумма внутренних односторонних углов равна 180° Всего мы получаем две пары внутренних односторонних углов: <1 и <2, <3 и <4 Причем <1 + <2 = 180° <3 + <4 = 180° Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360° Нам известна сумма трех углов. Найдем четвертый угол: 360° - 235° = 125° Допустим, это <1. Тогда <2 = 180°-125°=55° <2 и <3 - накрест лежащие, по свойству параллельных прямых они равны <2 = <3 = 55° <4 и <1 - также накрест лежащие, следовательно <4 = 125°
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Всего мы получаем две пары внутренних односторонних углов:
<1 и <2, <3 и <4
Причем
<1 + <2 = 180°
<3 + <4 = 180°
Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360°
Нам известна сумма трех углов. Найдем четвертый угол:
360° - 235° = 125°
Допустим, это <1. Тогда <2 = 180°-125°=55°
<2 и <3 - накрест лежащие, по свойству параллельных прямых они равны
<2 = <3 = 55°
<4 и <1 - также накрест лежащие, следовательно
<4 = 125°