Многогранник ABFA1 - неправильная треугольная пирамида, в основании которой лежит треугольник ABF, а высота равна AA1 - поскольку боковые ребра призмы перпендикулярны плоскости основания. То есть Vabfa1 = (1/3)*Sabf*AA1; для решения задачи надо найти площадь треугольника ABF. Пусть O центр ABCDEF. Радиус описанной около шестиугольника окружности равен стороне этого шестиугольника, то есть AB = OA = OB = ... и так далее. Все шесть треугольников AOB, BOC, COD, DOE, EOF, AOF - равные между собой правильные треугольники. Поэтому площадь каждого из них равна 1. ABOF - ромб, составленный из 2 равных треугольников ABO и AFO, поэтому площадь ромба ABOF = 2; площадь треугольника ABF - половина площади этого ромба, так как диагональ BF делит ромб на 2 равных треугольника ABF и OBF. Поэтому площадь треугольника ABF Sabf = 1; Объем пирамиды ABFA1 Vabfa1 = (1/3)*1*15 = 5;
Равносторонний ΔАВС (АВ=ВС=АС, <А=<В=<С=60°). Проведем окружность с центром А и радиусом, равным АВ. Значит, точки В и С лежат на этой окружности. Центральный А оприается на дугу ВС=60°. на этой дуге ВС отметим точку К. Тогда вписанный угол ВКС опирается на дугу ВС=360-60=300°, значит <ВКС=300/2=150°. Если рассмотреть четырехугольник ВКСМ, то в нем <ВКС+<ВМС=150+30=180°. Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность. Т.к. точки В, К и С лежат на одной окружности, проведенной нами, и известно, что через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну, то и точка М лежит на этой окружности. ΔАМС - равнобедренный (радиусы АМ=АС), значит углы при основании равны (<АМС=<АСМ=20°). ответ: 20°
То есть Vabfa1 = (1/3)*Sabf*AA1; для решения задачи надо найти площадь треугольника ABF.
Пусть O центр ABCDEF. Радиус описанной около шестиугольника окружности равен стороне этого шестиугольника, то есть AB = OA = OB = ... и так далее.
Все шесть треугольников AOB, BOC, COD, DOE, EOF, AOF - равные между собой правильные треугольники. Поэтому площадь каждого из них равна 1.
ABOF - ромб, составленный из 2 равных треугольников ABO и AFO, поэтому площадь ромба ABOF = 2;
площадь треугольника ABF - половина площади этого ромба, так как диагональ BF делит ромб на 2 равных треугольника ABF и OBF.
Поэтому площадь треугольника ABF Sabf = 1;
Объем пирамиды ABFA1
Vabfa1 = (1/3)*1*15 = 5;
Проведем окружность с центром А и радиусом, равным АВ. Значит, точки В и С лежат на этой окружности.
Центральный А оприается на дугу ВС=60°. на этой дуге ВС отметим точку К. Тогда вписанный угол ВКС опирается на дугу ВС=360-60=300°, значит <ВКС=300/2=150°.
Если рассмотреть четырехугольник ВКСМ, то в нем <ВКС+<ВМС=150+30=180°. Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Т.к. точки В, К и С лежат на одной окружности, проведенной нами, и известно, что через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну, то и точка М лежит на этой окружности.
ΔАМС - равнобедренный (радиусы АМ=АС), значит углы при основании равны (<АМС=<АСМ=20°).
ответ: 20°