Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc)
Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc)
Smkpc = Sapc-Sakm = 3/4 - 3/8 = 3/8.
Тогда Sakm/Smkpc = (3/8):(3/8) = 1/1.
S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5
P.s решение от krosch5.