Медиана это отрезок соединяющий вершину треугольника с серединой противоположной стороны. ------------------------ Значит нужно найти середину АС. Ставишь ножку циркуля в вершину А и проводишь окружность (можно дугу) радиуса больше половины отрезка АС. Переставляешь ножку циркуля в вершину С и тем же радиусом чертишь вторую окружность. Окружности пересекутся в двух точках. Через эти точки проведи прямую, которая пересечет сторону АС посередине в точке В1. Соединяешь середину В1 с вершиной В. Медиана ВВ1 готова.
------------------------
Значит нужно найти середину АС.
Ставишь ножку циркуля в вершину А и проводишь окружность (можно дугу) радиуса больше половины отрезка АС. Переставляешь ножку циркуля в вершину С и тем же радиусом чертишь вторую окружность. Окружности пересекутся в двух точках. Через эти точки проведи прямую, которая пересечет сторону АС посередине в точке В1. Соединяешь середину В1 с вершиной В. Медиана ВВ1 готова.
В трапеции АВСD. AD⊥AB⊥BC; О - центр вписанной окружности.
ОС=6, ОD=8. Найти площадь трапеции.
_______
Вписать окружность в четырехугольник можно тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник.⇒
АD+BC=AB+CD
Центр вписанной в углы ВСD и СDA окружности лежит на пересечении их биссектрис. ⇒ ∠СОD=90°
По т.Пифагора CD=√(CO²+OD²)=10
Радиус ОН, проведенный в точку касания окружности и боковой стороны - высота ∆ СОD.
h=2S/CD
ОН=СО•OD:CD=6•8:10=4,8
АВ=2r=9,6=H
AD+BC=9,6+10=19,6
S=H•(AD+BC):2=94,08 (ед. площади)