АВ = АD/2 = a/2 (катет лежащий напротив угла в 30° равен половине гипотенузы) <ADC = <BDC + <BDA = 30 + 30 = 60° <BAD = <CDA = 60° ==> ==> ABCD - равнобедренная трапеция, AB = CD = a/2
отметим на основании AD середину- Е, AE = ED = AD/2 = a/2 AB = CD = AE = ED = a/2 ==> ∆ABE и ∆ECD – равнобедренные, а поскольку у них один угол равен 60°, (в ∆ABE <BAE = 60° , в ∆ECD <CDE = 60° ), то эти треугольники равносторонние AB = AE = BE = EC = CD = ED = a/2 и они равные ∆ABE = ∆CDE(по трем сторонам), и тогда ∆BEC – равнобедренный (ВЕ = ЕС) а раз один из его углов равен 60°(<BEC = 180 - <BEA - <CED = 60° ) , то ∆BEC – равносторонний BC = BE = CE = a/2
Pabcd = AB + BC + CD + AD = a/2 + a/2 + a/2 + a = 2,5а 60 = 2,5а а = 60/2,5 = 24 AD = a = 24 см
Пусть диагонали ОСНОВАНИЯ (не параллелепипеда) m и n, а высота (она же боковая сторона) h,тогда h = m*tg(60) = n*tg(45); тот есть m*корень(3) = n (и равно = h); Теперь смотрим на основание. Параллелограмм, у него стороны 17 и 31, и отношение диагоналей m/n = корень(3). Обозначим острый угол A. Тогда n лежит напротив него (а m - напротив тупого угла 180 - А). m^2 = 17^2 + 31^2 + 2*17*31*cos(A); n^2 = 17^2 + 31^2 - 2*17*31*cos(A); (m/n)^2 = 3 = (17^2 + 31^2 + 2*17*31*cos(A))/(17^2 + 31^2 - 2*17*31*cos(A)); 2*17*31*cos(A) = (17^2 + 31^2)/2; ( На первый взгляд кажется, что нам нужен угол А, но)) n^2 = h^2 = (17^2 + 31^2)/2 = 625; n = h = 25; m = n*корень(3) = 25*корень(3); d1 = n/cos(45) = 25*корень(2); d2 = m/cos(60) = 50;
<ABD = 90° (AB ⊥ BD)
<CBD = <BDC = 30° (по условию)
<ABC = <ABD + <CBD = 90 + 30 = 120°
<BAD = 180 - < ABC = 60° (односторонние углы)
<BDA = 180 - <ABD - <BAD = 30° (сумма углов треугольника 180° )
АВ = АD/2 = a/2 (катет лежащий напротив угла в 30° равен половине гипотенузы) <ADC = <BDC + <BDA = 30 + 30 = 60°
<BAD = <CDA = 60° ==>
==> ABCD - равнобедренная трапеция,
AB = CD = a/2
отметим на основании AD середину- Е, AE = ED = AD/2 = a/2
AB = CD = AE = ED = a/2 ==>
∆ABE и ∆ECD – равнобедренные, а поскольку у них один угол равен 60°, (в ∆ABE <BAE = 60° , в ∆ECD <CDE = 60° ),
то эти треугольники равносторонние AB = AE = BE = EC = CD = ED = a/2
и они равные ∆ABE = ∆CDE(по трем сторонам),
и тогда ∆BEC – равнобедренный (ВЕ = ЕС)
а раз один из его углов равен 60°(<BEC = 180 - <BEA - <CED = 60° ) , то ∆BEC – равносторонний BC = BE = CE = a/2
Pabcd = AB + BC + CD + AD = a/2 + a/2 + a/2 + a = 2,5а
60 = 2,5а
а = 60/2,5 = 24
AD = a = 24 см
m^2 = 17^2 + 31^2 + 2*17*31*cos(A);
n^2 = 17^2 + 31^2 - 2*17*31*cos(A);
(m/n)^2 = 3 = (17^2 + 31^2 + 2*17*31*cos(A))/(17^2 + 31^2 - 2*17*31*cos(A));
2*17*31*cos(A) = (17^2 + 31^2)/2; ( На первый взгляд кажется, что нам нужен угол А, но))
n^2 = h^2 = (17^2 + 31^2)/2 = 625; n = h = 25; m = n*корень(3) = 25*корень(3);
d1 = n/cos(45) = 25*корень(2);
d2 = m/cos(60) = 50;