Расстояние от вершины C треугольника ABC до прямой AB - это высота, опущенная из вершины С на сторону АВ. Пусть основание этой высоты - точка К. Тогда в прямоугольном треугольнике ВКС катет КС в 2 раза меньше гипотенузы ВС, значит, он лежит против угла в 30 градусов. Так как прямая а параллельна ВС, то расстояние от точек В и С до прямой а одинаково. Опустим перпендикуляр ВД из точки В на прямую а, угол АВД будет равен 90-30 = 60 градусов. Тогда искомое расстояние до прямой а равно 10*cos60 = 10*0.5 = 5.
Объяснение: Пусть все три данных отрезка пересекаются в точке О. Обозначим ВН высоту из В, АК - биссектрису, МО - срединный перпендикуляр к АВ.
Треугольник АОВ - равнобедренный, т.к. его высота ОМ - медиана ( проходит через середину АВ), поэтому∠ВАО=∠АВО. Примем их равными α каждый. Так как АК - биссектриса, ∠ОАН=∠ВАО=α, а угол ∠ВАН=2 α. В прямоугольном треугольнике сумма острых углов равна 90°. 3α=90°, ⇒ α=30°
Пусть основание этой высоты - точка К.
Тогда в прямоугольном треугольнике ВКС катет КС в 2 раза меньше гипотенузы ВС, значит, он лежит против угла в 30 градусов.
Так как прямая а параллельна ВС, то расстояние от точек В и С до прямой а одинаково.
Опустим перпендикуляр ВД из точки В на прямую а, угол АВД будет равен 90-30 = 60 градусов.
Тогда искомое расстояние до прямой а равно 10*cos60 = 10*0.5 = 5.
ответ: 50°
Объяснение: Пусть все три данных отрезка пересекаются в точке О. Обозначим ВН высоту из В, АК - биссектрису, МО - срединный перпендикуляр к АВ.
Треугольник АОВ - равнобедренный, т.к. его высота ОМ - медиана ( проходит через середину АВ), поэтому∠ВАО=∠АВО. Примем их равными α каждый. Так как АК - биссектриса, ∠ОАН=∠ВАО=α, а угол ∠ВАН=2 α. В прямоугольном треугольнике сумма острых углов равна 90°. 3α=90°, ⇒ α=30°
В прямоугольном ∆ СВН ∠СВН=90°-∠ВСН=90°-70°=20°
Угол АВС=∠АВН+∠СВН=30°+20°=50°