В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
pech228
pech228
25.09.2020 08:47 •  Геометрия

Геометрия 8 ой класс. Посмотрите правильно ли я сделал


Геометрия 8 ой класс. Посмотрите правильно ли я сделал
Геометрия 8 ой класс. Посмотрите правильно ли я сделал

Показать ответ
Ответ:
bestsoule
bestsoule
07.03.2021 11:30

Можно решить

Из прямоуг. треуг-ка АОВ найдем катеты( равны радиусу) 2Rквад = 324, или Rквад = 162. Теперь по известной формуле для прямоуг. тр-ка найдем искомое расстояние, а именно - высоту, опущенную на гипотенузу:

h = Rквад/АВ = 9см

треугольник АОВ - равнобедренный и прямоугольный по теореме Пифагора ОА = ОВ = 18 : sqrt2 = 9*sqrt2 обозначим h - расстояние от точки О до хорды, этот отрезок будет перпендикулярен хорде тогда площадь треугольника АОВ = ОА*ОВ/2 = АВ*h/2 отсюда h = ОА*ОВ/АВ = (9*SQRT2)^2/18 = 9 см

0,0(0 оценок)
Ответ:
Skipihc
Skipihc
07.01.2020 14:54

\boldsymbol{V=\dfrac{4l^3\sin^2\beta\cdot \cos\beta (1-\cos\alpha)}{3\sin\alpha}}

Объяснение:

Центр окружности, вписанной в равнобедренную трапецию, лежит на середине отрезка КЕ (точки К и Е - середины оснований).

Так как точка пересечения диагоналей лежит на том же отрезке, но ближе к меньшему основанию, высота пирамиды лежит на образующей конуса, проходящей через точку К.

Высота трапеции равна диаметру вписанной окружности, а суммы противолежащих сторон равны.

Итак, ВР = КЕ = 2R,

AB + CD = AD + BC

AD = b,  BC = a.

Чтобы найти высоту пирамиды, надо знать длину КН, а для этого найти расстояние между центром окружности и основанием высоты пирамиды ОН = х.

ΔАВР:  ∠АРВ = 90°,

AB=\dfrac{BP}{\sin\alpha}=\dfrac{2R}{\sin\alpha }

AP = BP · ctg α = 2R · ctg α

Тогда

\boldsymbol{b+a}=AB+CD=2AB\boldsymbol{=\dfrac{4R}{\sin\alpha}}

Так как по свойству равнобедренной трапеции

АР = (AD - BC) / 2, то

b - a = 2AP = 4R · ctg α

ΔAHD ~ ΔCHB по  двум углам, тогда их высоты относятся как сходственные стороны:

\dfrac{HE}{HK}=\dfrac{b}{a}

\dfrac{R+x}{R-x}=\dfrac{b}{a}

a(R + x) = b(R - x)

aR + ax = bR - bx

x(a + b) = R(b - a)

x=\dfrac{R(b-a)}{b+a}=\dfrac{R\cdot 4R\cdot ctg\alpha}{\dfrac{4R}{\sin\alpha}}=R\cdot \cos\alpha

KH = R - x = R(1 - cos α)

Справа на рисунке осевое сечение конуса, проходящее через хорду КЕ.

∠KSH = ∠KMO = β как соответственные при SH║MO и секущей КМ.

SH = KH · ctg β = R(1 - cos α) · ctgβ

Итак, объем пирамиды:

V=\dfrac{1}{3}S_{ABCD}\cdot SH

S_{ABCD}=\dfrac{b+a}{2}\cdot 2R=\dfrac{2R}{\sin\alpha }\cdot 2R=\dfrac{4R^2}{\sin\alpha}

V=\dfrac{1}{3}\cdot \dfrac{4R^2}{\sin\alpha }\cdot R(1-\cos\alpha )\cdot ctg\beta=\dfrac{4R^3ctg\beta (1-\cos\alpha)}{3\sin\alpha}

Осталось из прямоугольного треугольника МОЕ выразить R:

R=l\cdot \sin\beta

V=\dfrac{4l^3\sin^3\beta\cdot ctg\beta (1-\cos\alpha)}{3\sin\alpha}

\boldsymbol{V=\dfrac{4l^3\sin^2\beta\cdot \cos\beta (1-\cos\alpha)}{3\sin\alpha}}


Основанием пирамиды служит равнобедренная трапеция с острым углом Эта трапеция описана около окружн
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота