В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Вероника13411
Вероника13411
08.05.2022 23:30 •  Геометрия

Геометрия 8 Сынып 3 тоқсан
БЖБ ​


Геометрия 8 Сынып 3 тоқсанБЖБ ​

Показать ответ
Ответ:
stas7454
stas7454
07.03.2022 21:29

а)Делим угол ВАС пополам. Для этого циркулем проводим окружность произвольного радиуса с центром в точке А и затем из точек пересечения D и E этой окружности с прямыми АВ и АС радиусом DE проводим окружности. Соединяем точки пересечения этих окружностей прямой F1F и продолжаем ее до пересечения со стороной ВС. В точке пересечения ставим точку К. Биссектриса АК угла А построена.

Доказательство. Треугольник ADE равнобедренный (AD=AE - радиусы), а прямая F1F перпендикулярна прямой DE и делит ее пополам (свойство общей хорды двух пересекающихся окружностей).Следовательно, прямая F1F проходит через точку А и делит угол А пополам, так как высота, медиана и биссектриса равнобедренного треугольника - это один и тот же отрезок (свойство).

б). Воспользуемся предложенной в пункте а) методикой построения прямой, делящей отрезок пополам. Из точек А и С проведем окружности одинаковых радиусов, больших половине отрезка АС. Соединяем точки пересечения этих окружностей прямойй и в точке пересечения этой прямой и отрезка АС ставим точку М. Точка М делит отрезок АС пополам по свойству общей хорды пересекающихся окружностей. Соединив точки В и М получаем медиану ВМ треугольника АВС.

в) Строим прямую, проходящую через точку С и перпендикулярную стороне АВ.Для этого из точки С проведем окружность произвольного радиуса, пересекающую прямую АВ в точках G и Р. Затем делим отрезок GР пополам указанным выше и получаем точку Н, соединив которую с точкой С, получаем высоту СН.


Дан треугольник авс.постройте: а)биссектрису ак; б)медиану вм; в)высоту сн треугольника
0,0(0 оценок)
Ответ:
tim2k09
tim2k09
14.11.2022 06:05

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть 
c2 = a2 + b2,
где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).


Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)


.

Теорема 11 (формула для вычисления длины биссектрисы).


Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы). 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота