В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
garachuk75
garachuk75
19.10.2020 08:16 •  Геометрия

Геометрия. 8кл. Надо решение данной задачи ребята?

Показать ответ
Ответ:
rusnc
rusnc
25.02.2021 20:01
Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны 
Пусть Δ ABC и  таковы, что    По аксиоме 4.1 существует  равный Δ ABC, с вершиной  на луче  и с вершиной  в той же полуплоскости, где и вершина  Так как  то вершина  совпадает с вершиной  Так как  и  то луч совпадает с лучом  а луч  совпадает с лучом  Отсюда следует, что вершина  совпадает с вершиной  Итак,  совпадает с треугольником  а значит, равен Δ ABC. Теорема доказана. 
Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны Пусть Δ ABC и Δ A1B1C1 таковы, что AB = A1B1; BC = B1C1 ; AC = A1C1. Доказательство от противного.

Пусть треугольники не равны. Отсюда следует, что  одновременно. Иначе треугольники были бы равны по первому признаку.

Пусть Δ A1B1C2 – треугольник, равный Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Треугольники A1C1C2 и B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1Dи B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точкуD прямой C1C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.

0,0(0 оценок)
Ответ:
146727
146727
25.02.2021 20:01
Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны 
Пусть Δ ABC и  таковы, что    По аксиоме 4.1 существует  равный Δ ABC, с вершиной  на луче  и с вершиной  в той же полуплоскости, где и вершина  Так как  то вершина  совпадает с вершиной  Так как  и  то луч совпадает с лучом  а луч  совпадает с лучом  Отсюда следует, что вершина  совпадает с вершиной  Итак,  совпадает с треугольником  а значит, равен Δ ABC. Теорема доказана. 
Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны Пусть Δ ABC и Δ A1B1C1 таковы, что AB = A1B1; BC = B1C1 ; AC = A1C1. Доказательство от противного.

Пусть треугольники не равны. Отсюда следует, что  одновременно. Иначе треугольники были бы равны по первому признаку.

Пусть Δ A1B1C2 – треугольник, равный Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Треугольники A1C1C2 и B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1Dи B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точкуD прямой C1C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота