В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, поэтому радиус описанной окружности равен 2,5х. Медиана, проведенная к гипотенузе из вершины прямого угла, делит гипотенузу пополам, т.е. попадает в центр описанной окружности. Зная, что ее длина равна 6, можем найти х:
Периметр треугольника равен 3х+4х+5х=12х, т.е. 12*2,4=28,8
В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Площадь треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 см
Объяснение:
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, поэтому радиус описанной окружности равен 2,5х. Медиана, проведенная к гипотенузе из вершины прямого угла, делит гипотенузу пополам, т.е. попадает в центр описанной окружности. Зная, что ее длина равна 6, можем найти х:
Периметр треугольника равен 3х+4х+5х=12х, т.е. 12*2,4=28,8