2. Формула площади тр-угольника: S=(a*h)/2, где а-основание тр-льника, h-высота, проведённая к основанию а. Подставляем и получаем: S(тр-льника АВС) = (36*12)/2 = 216 (см^2)
2 задача..
Дано: Параллелограм АВСD; AB=8 cм; AD=14 см; BH - высота, проведённая к стороне AD; BH=4 см
Найти: S(ABCD); BK - высота, прведённая к стороне CD
1) Площадь параллелограмма вычисляется по формуле: S=a*h, где h - высота, проведённая к стороне а. Подставляем: S(ABCD)=AD*BH=14*4=56 (см^2)
2) Чтобы найти вторую высоту (BK) будем использовать ту же формула площади, только теперь у нас известна площадь и сторона, к которой и проведена высота BK. Если подставим в формулу наши значения, то получим: 56=8*BK ==> откуда BK=56/8=7 (см)
Пусть высота проведенная к большей стороне(АД) - ВН. Площадь параллелограмма равна произведению основания на высоту проведенную к этому основнию, значит S=BH*AD=14*4=56(см)^2-площадь параллелограмма.
Обозначим вторую высоту проведенную к стороне СД, как АК, тогда по формуле площади парллелограмма имеем:
1 задача..
Дано: тр-льник АВС; ВН - высота; ВН=12 см; АС - основание тр-льника АВС; АС=3ВН
Найти: S(тр-льника АВС)
1. АС=3ВН=12*3=36 (см)
2. Формула площади тр-угольника: S=(a*h)/2, где а-основание тр-льника, h-высота, проведённая к основанию а. Подставляем и получаем: S(тр-льника АВС) = (36*12)/2 = 216 (см^2)
2 задача..
Дано: Параллелограм АВСD; AB=8 cм; AD=14 см; BH - высота, проведённая к стороне AD; BH=4 см
Найти: S(ABCD); BK - высота, прведённая к стороне CD
1) Площадь параллелограмма вычисляется по формуле: S=a*h, где h - высота, проведённая к стороне а. Подставляем: S(ABCD)=AD*BH=14*4=56 (см^2)
2) Чтобы найти вторую высоту (BK) будем использовать ту же формула площади, только теперь у нас известна площадь и сторона, к которой и проведена высота BK. Если подставим в формулу наши значения, то получим: 56=8*BK ==> откуда BK=56/8=7 (см)
ответ: S(ABCD)=56 см^2
мЕньшая высота BK=7 см
Я знаю первое))
Дано:тр-к АВС,АВ=ВС=17,ВД-высота_cosA=8/17 Найти:ВД Pешение: 1)cosA=AD/AB=>8/17=AD/17=>AD=8. 2)BD²=AB²-AD²;BD²=17²-8²=(17-8)(17+8)=9*25=>BD=3*5=15.
А второе только без дано((
Пусть высота проведенная к большей стороне(АД) - ВН. Площадь параллелограмма равна произведению основания на высоту проведенную к этому основнию, значит S=BH*AD=14*4=56(см)^2-площадь параллелограмма.
Обозначим вторую высоту проведенную к стороне СД, как АК, тогда по формуле площади парллелограмма имеем:
S=AK*CD, отсюда АК=S/CD=56/8=7(см).
ответ: 56см^2, 7см.