Если точка удалена на одно и то же расстояние от всех вершин, то она принадлежит прямой, перпендикулярной плоскости треугольника и проходящей через точку пересечения его серединных перпендикуляров (в нашем случае серед. перпендикуляры совпадают с высотами). Пусть (.) K - точка, о которой идет речь в условии, (.) N - точка пересечения высот треугольника (ортоцентр). Рассмотрим прямоугольный тр. ΔKNB, в котором угол при вершине N прямой. NB - 2/3 h - высоты тр. ΔABC. KB - данное нам расстояние - 10 см. Найдем высоту: h = a√3 / 2 = 6/2 * √3² = 3*3 = 9 Тогда 2/3 h = 6. А значит, расстояние от точки до плоскости тр.: KN² = 10² - 6² = 64 = 8² KN = 8.
ответ: расстояние от точки до плоскости треугольника равно 8 см
Трапеция получается равнобедренная: боковые стороны равны а, верхнее основание равно а, нижнее основание равно 2а. Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а. Значит высота h=√(а²-(0,5а)²)=а√3/2 Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4 Правильный треугольник со сторонами 2а. Площадь треугольника Sтр=√3*(2а)²/4=√3а² Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.
Пусть (.) K - точка, о которой идет речь в условии,
(.) N - точка пересечения высот треугольника (ортоцентр).
Рассмотрим прямоугольный тр. ΔKNB, в котором угол при вершине N прямой. NB - 2/3 h - высоты тр. ΔABC. KB - данное нам расстояние - 10 см.
Найдем высоту: h = a√3 / 2 = 6/2 * √3² = 3*3 = 9
Тогда 2/3 h = 6.
А значит, расстояние от точки до плоскости тр.:
KN² = 10² - 6² = 64 = 8²
KN = 8.
ответ: расстояние от точки до плоскости треугольника равно 8 см
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а.
Значит высота h=√(а²-(0,5а)²)=а√3/2
Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4
Правильный треугольник со сторонами 2а.
Площадь треугольника Sтр=√3*(2а)²/4=√3а²
Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.