Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. чтобы доказать эту теорему, построим два прямоугольных гольника abc и а'в'с', у которых углы а и а' равны, гипотенузы ав и а'в' также равны, а углы с и с' — прямые наложим треугольник а'в'с' на треугольник abc так, чтобы вершина а' совпала с вершиной а, гипотенуза а'в' — с равной гипотенузой ав. тогда вследствие равенства углов a и а' катет а'с' пойдёт по катету ас; катет в'с' совместится с катетом вс: оба они перпендикуляры, проведённые к одной прямой ас из одной точки в (§ 26,следствие 3). значит, вершины с и с' совместятся. треугольник abc совместился с треугольником а'в'с'. следовательно, /\ авс = /\ а'в'с'.эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
Основанием пирамиды dabc является правильный треугольник abc сторона которого = .ребро da перпендикулярно к плоскости авс, а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2