Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Объяснение:
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8