первое: прямоугольным треугольником называется треугольник, у которого один угол прямой. второе: в прямоугольном треугольнике может быть только один прямой. 3: сумма 2 острых углов прямоугольного треугольника равна 90°. четвёртое: катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы. 5 и 6: это признаки равенства прямоугольных треугольников . 7: перпендикуляр проведенный Из точки к прямой меньше любой наклонной проведённой из той же точки к этой прямой. 8: длина перпендикуляра проведённого Из точки к прямой называется расстоянием от этой точки до прямой.
Объяснение:
1. АО = ОВ как радиусы => треугольник АОВ равнобедренный
угол А = 40
угол ВОС - центральный, ОАВ - вписанный. Значит, ВОС = 40*2 = 80
2. При построении получаем прямоугольный треугольник ДОС с гипотенузой ОС = 16 и углом О = 60. ОД - радиус - катет.
Второй острый угол = 90-60 = 30
ОД лежит напротив угла в 30, значит он равен половине гипотенузы. То есть ОД = 16/2 = 8
3. Рассматриваем треугольники МОК и РОN
Они равны по 1 признаку: ОМ=ОР, ОК=ОN как радиусы окружности, углы между ними (вокруг точки О) равны как вертикальные.
Значит, углы М, К, Р и N также равные => МК параллельно PN т.к. накрест лежащие углы равны.
1.-
2.+
3.-
4.+
5.+
6.+
7.-
8.+
Объяснение:
первое: прямоугольным треугольником называется треугольник, у которого один угол прямой. второе: в прямоугольном треугольнике может быть только один прямой. 3: сумма 2 острых углов прямоугольного треугольника равна 90°. четвёртое: катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы. 5 и 6: это признаки равенства прямоугольных треугольников . 7: перпендикуляр проведенный Из точки к прямой меньше любой наклонной проведённой из той же точки к этой прямой. 8: длина перпендикуляра проведённого Из точки к прямой называется расстоянием от этой точки до прямой.