В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Отрезки АВ и А1В1 касаются своими концами А, А1 и В, В1 плоскостей бета и альфа соответственно. Проведем перпендикуляры с пунктов В и В1, они пересекают плоскость бета в пунктах С и С1. АС и А1С1 проекции отрезков АВ и А1В1 на плоскость бета. У нас есть 2 прямоугольных треугольника АВС и А1В1С1. Раз отношение их катетов АС и А1С1 = 5:9, то мы можем обозначить АС через 5х, а А1С1 через 9х. ВС = В1С1 обозначим их через у (расстояния между двумя параллельными плоскостями) найдем их по теореме Пифагора из треугольников АВС и А1В1С1. (во вложении).
Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Интересная задачка напряг извилины.
(Рисунок во вложении)
Отрезки АВ и А1В1 касаются своими концами А, А1 и В, В1 плоскостей бета и альфа соответственно. Проведем перпендикуляры с пунктов В и В1, они пересекают плоскость бета в пунктах С и С1. АС и А1С1 проекции отрезков АВ и А1В1 на плоскость бета. У нас есть 2 прямоугольных треугольника АВС и А1В1С1. Раз отношение их катетов АС и А1С1 = 5:9, то мы можем обозначить АС через 5х, а А1С1 через 9х. ВС = В1С1 обозначим их через у (расстояния между двумя параллельными плоскостями) найдем их по теореме Пифагора из треугольников АВС и А1В1С1. (во вложении).
у = ВС = В1С1=24 (это и есть наше расстояние)