Координаты середины отрезка через координаты радиус-векторов его концов.Формулы для нахождения координат середины отрезка легко получить, обратившись к алгебре векторов.Пусть на плоскости задана прямоугольная декартова система координат Oxy и точка С – середина отрезка АВ, причем и .По геометрическому определению операций над векторами справедливо равенство (точка С является точкой пересечения диагоналей параллелограмма, построенного на векторах и , то есть, точка С – середина диагонали параллелограмма). В статье координаты вектора в прямоугольной системе координат мы выяснили, что координаты радиус-вектора точки равны координатам этой точки, следовательно, . Тогда, выполнив соответствующие операции над векторами в координатах, имеем . Откуда можно сделать вывод, что точка С имеет координаты .Абсолютно аналогично могут быть найдены координаты середины отрезка АВ через координаты его концов в пространстве. В этом случае, если С – середина отрезка АВ и , то имеем .
Дано: треугольник АВС (можете назвать как захотите) Р треугольника АВС=16.4 Найти: Длину каждой стороны. Решение: Так как треугольник равнобедренный, значит две его стороны равны.За х обозначьте за боковую сторону. Боковых сторон две, значит вторая боковая сторона тоже равна х. Периметр треугольника равен сумме длин всех сторон.Так как основание на 4.4 больше значит основание равно х+4.4.Тогда составим и решим уравнение.
х+х+х+4.4=16.4 1)4+4.4=8.4(см.) - основание 3х+4.4=16.4 3х=16.4 - 4.4 3х=12 х=12 : 3 х=4 ответ: 4 см - боковые стороны, 8.4 см - основание
треугольник АВС (можете назвать как захотите)
Р треугольника АВС=16.4
Найти:
Длину каждой стороны.
Решение:
Так как треугольник равнобедренный, значит две его стороны равны.За х обозначьте за боковую сторону. Боковых сторон две, значит вторая боковая сторона тоже равна х. Периметр треугольника равен сумме длин всех сторон.Так как основание на 4.4 больше значит основание равно х+4.4.Тогда составим и решим уравнение.
х+х+х+4.4=16.4 1)4+4.4=8.4(см.) - основание
3х+4.4=16.4
3х=16.4 - 4.4
3х=12
х=12 : 3
х=4
ответ: 4 см - боковые стороны, 8.4 см - основание